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It’s a dynamical, networked, and complex world !

biology engineering social science
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1. dynamical processes: ẋ(t) = f (x(t)) or x(t + 1) = f (x(t))
2. many “simple” units interconnected through a network: G = (V , E)

2



It’s a dynamical, networked, and complex world !

x(t) = neural activity x(t) = power consumption x(t) = individual opinions

cognition, seizures desync, blackouts consensus, polarizations
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It’s a dynamical, networked, and complex world !
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It’s a dynamical, networked, and complex world !

x(t) = neural activity
sensory areas

x(t) = power consumption
generators

x(t) = individual opinions
influencers

cognition, seizures desync, blackouts consensus, polarizations

1. dynamical processes: ẋ(t) = f (x(t)) or x(t + 1) = f (x(t))
2. many “simple” units interconnected through a network: G = (V , E)
3. emergence of complex phenomena/behaviors
4. presence of nodes with control authority

Analyze, predict, and control dynamics over large-scale networks
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Disclaimer

dynamics = linear dynamics

ẋ(t) = Ax(t) + Bu(t) x(t + 1) = Ax(t) + Bu(t)

x(0) = x0 ∈ Rn, A ∈ Rn×n, B ∈ Rn×m
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Roadmap

Network controllability:
◦ the structural approach
◦ the “practical” approach

Non-normal dynamics
and network structure

Data-driven control of networks

Conclusions & open challenges
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Control theory meets network science

12 May, 2011
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Control theory meets network science

12 May, 2011
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Network controllability: setting

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A = network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V
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Network controllability: setting

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A = network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

xn

x2 x3

x1

x0

xf = target state

xn

x2 x3

x1

xf

x0

u ?

controllability =
∃ u(t),T : x(0) = x0, x(T ) = xf, ∀x0, xf

iff
rank

[
B AB · · · An−1B

]︸ ︷︷ ︸
C

= n

Kalman rank condition (1963)
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Network controllability: the structural approach

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A = network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

structural controllability =
∃ weights such that network is controllable

=⇒
controllability for almost all choices of weights!
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Network controllability: the structural approach

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A = network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

structural controllability =
∃ weights such that network is controllable

=⇒
controllability for almost all choices of weights!

captures the role of network topology
can be checked via graphical conditions
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Structural network controllability: some relevant questions (w/ answers)

• What is the minimum set of control nodes that guarantees controllability?
. polynomial time algorithms [Pequito et al., 2016]

(“standard” controllability: NP-hard problem [Olshevsky, 2014] !)

• How does the network structure affect structural controllability? [Liu et al., 2011]

. dense, homogeneous networks are “easier” to control (require fewer inputs)

. choice of hubs as control nodes is not “optimal”
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...however edge weights do matter !

controllable networks might be uncontrollable in practice !!



Network controllability: the “practical” approach

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A =
stable

network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

xn

x2 x3

x1

x0 = 0

xf∃ u

How much energy is needed?
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Network controllability: the “practical” approach

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A =
stable

network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

energy needed to reach xf in T steps:
T−1∑
t=0
‖u?(t)‖2 = x>f W−1

T xf

scalar metrics:
λ−1

min(WT ) = worst-case control energy

tr(W−1
T ) = average control energy

1/ det(WT ) = “volumetric” control energy

..
.
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Network controllability: the “practical” approach

dynamical system with state x(t)
+ control u(t)

xi (t)u(t)

A =
stable

network
matrix

G = (V, E)

x(t + 1) = Ax(t) + Bu(t)

B (typically) selects a subset of V

energy needed to reach xf in T steps:
T−1∑
t=0
‖u?(t)‖2 = x>f W−1

T xf

scalar metrics:
λ−1

min(WT ) = worst-case control energy

λmin(WT ) ↓↓ =⇒ control energy ↑↑
λmin(WT ) ↑↑ =⇒ control energy ↓↓
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Difficult-to-control networks
[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

Theorem: Let A be diagonalizable with eigenvector matrix V , and (Schur) stable.
Then, for all T ∈ N>0:

λmin(WT ) ≤ min
{
‖V ‖2‖V−1‖2 ρ(A)2( n

m−1)

1− ρ(A)2 ,
4µ(A)2( n

m−1)

1− µ(A)2

}

where ρ(A) = max
λ∈σ(A)

λ (spec. radius) and µ(A) = max
‖x‖=1

|x>Ax | (num. radius).
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Difficult-to-control networks
[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

Theorem: Let A be diagonalizable with eigenvector matrix V , and (Schur) stable.
Then, for all T ∈ N>0:

λmin(WT ) ≤ min
{
‖V ‖2‖V−1‖2 ρ(A)2( n

m−1)

1− ρ(A)2 ,
4µ(A)2( n

m−1)

1− µ(A)2

}

where ρ(A) = max
λ∈σ(A)

λ (spec. radius) and µ(A) = max
‖x‖=1

|x>Ax | (num. radius).

If A is stable, normal, and m is fixed and independent of n:

λmin(WT ) ≤ K n, with 0 < K < 1

control energy grows exponentially fast with n !!
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Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

λmin(WT ) ≥ L, L > 0, for all n ??

N.B. Such networks must satisfy ‖V ‖‖V−1‖ � 1 and/or µ(A) > 1
=⇒ strong non-normality !
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Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

λmin(WT ) ≥ L, L > 0, for all n ??

N.B. Such networks must satisfy ‖V ‖‖V−1‖ � 1 and/or µ(A) > 1
=⇒ strong non-normality !

Short answer: Yes
but a characterization of these networks is still largely an open problem !

15



An easy-to-control network
[Pasqualetti and Zampieri, 2015]

A =



a b 0 · · · 0
c a b · · · 0
0 c . . . . . . ...
... . . . . . . a b
0 · · · · · · c a



. . .
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An easy-to-control network
[Pasqualetti and Zampieri, 2015]

A =



a b 0 · · · 0
c a b · · · 0
0 c . . . . . . ...
... . . . . . . a b
0 · · · · · · c a



. . .

a = 0.3
c

b
Theorem: A Toeplitz line network is easy to control if one of the following holds:
◦ a(b+c)

4bc ≤ 1 and 1 < (b − c)2(1− a2
4bc )

◦ a(b+c)
4bc > 1 and 1 ≤ c + b − a
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Loosely speaking...

WT ↑↑ ⇐⇒ W−1
T ↓↓ ⇐⇒ control energy ↓↓
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Loosely speaking...

WT ↑↑ ⇐⇒ W−1
T ↓↓ ⇐⇒ control energy ↓↓

A normal =⇒ WT “small”
=⇒ difficult to control

A non-normal =⇒ WT (potentially) “large”
=⇒ (potentially) easy to control
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Roadmap

Network controllability:
◦ the structural approach
◦ the “practical” approach

Non-normal dynamics
and network structure

Data-driven control of networks

Conclusions & open challenges



Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>A

symmetric, skew-symmetric,
orthogonal, circulant... ...all the rest!

AA> = A>A
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A

A = U∗DU,
U unitary, D diagonal

A = V−1DV ,
V not unitary, D diagonal

(for A diagonalizable)
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A

fully described by spectrum described by ε-pseudospectrum
(≈ perturbed spectrum)

σ(A) = {λi}n
i=1 σε(A) = {λ ∈ σ(A + E ),

E ∈ Cn×n, ‖E‖ ≤ ε}
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A

fully described by spectrum described by ε-pseudospectrum
(≈ perturbed spectrum)

σ(A) = {λi}n
i=1 σε(A) = {λ ∈ σ(A + E ),

E ∈ Cn×n, ‖E‖ ≤ ε}

small perturbations of the entries⇒

(possibly) large perturbations of the spectrum

small perturbations of the entries⇒

small perturbations of the spectrum
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A

A =
[
−1 0
0 −2
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Matrix non-normality
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ẋ(t) = Ax(t), x(0) = x0
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
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ẋ(t) = Ax(t), x(0) = x0
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Matrix non-normality

A ∈ Rn×n

normal matrices non-normal matrices
AA> 6= A>AAA> = A>A

α(A) := max
λ∈σ(A)

Reλ → asymptotic behavior

0−10−20

0

−10

10

Re λ

Im
λ

“non-normality” of A → transient behavior

σ(A)

19



Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks
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Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks
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How to measure non-normality?

‖AA> − A>A‖

‖V−1‖‖V ‖

V = eigenvector matrix of A

sup
t≥0
‖eAt‖

∫ ∞
0
‖eAt‖F dt

min
N∈N

‖A− N‖

N = set of normal matrices
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How to measure non-normality?

‖AA> − A>A‖

‖V−1‖‖V ‖

min
N∈N

‖A− N‖
“static”

sup
t≥0
‖eAt‖

∫ ∞
0
‖eAt‖F dt

“dynamic”

21



How to measure non-normality?

‖AA> − A>A‖

‖V−1‖‖V ‖

min
N∈N

‖A− N‖
“static”

sup
t≥0
‖eAt‖

∫ ∞
0
‖eAt‖F dt

“dynamic”

...and many more
[Trefethen and Embree, Princeton (2005)]
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A link to network structure for positive networks
[Baggio and Zampieri, 2018]

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

A stable and Metzler
(Re[σ(A)] < 0 and Aij > 0, i 6= j)

G = (V, E)d(K, T ) = relative diameter

shortest path length between
two most distant nodes
vi ∈ K and vj ∈ T

K = { }

T = { }
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A link to network structure for positive networks
[Baggio and Zampieri, 2018]

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

A stable and Metzler
(Re[σ(A)] < 0 and Aij > 0, i 6= j)

G = (V, E)d(K, T ) = relative diameter

shortest path length between
two most distant nodes
vi ∈ K and vj ∈ T

K = { }

T = { }

non-normality ↑↑ ⇐⇒ d(K, T ) ↑↑
+ directionality(supt≥0 ‖CeAtB‖)
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Controlling networks from data

x(t) = neural activity x(t) = power consumption x(t) = individual opinions

Network structure may be uncertain and/or changing over time !
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Controlling networks from data

x(t) = neural activity x(t) = power consumption x(t) = individual opinions

Network structure may be uncertain and/or changing over time !

time of day

po
we

r

However, there’s plenty of data out there...
24



Can we control a network directly from data?



The data-driven minimum-energy control problem

x(t + 1) = ? x(t) + ? u(t), x(0) = 0

xf ∈ Rn controllable in T steps from x(0) = 0
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The data-driven minimum-energy control problem

x(t + 1) = ? x(t) + ? u(t), x(0) = 0

xf ∈ Rn controllable in T steps from x(0) = 0

i-th control experiment

0 1 2

. . .

· · · T − 1

ui(T−1)...
ui(2)
ui(1)
ui(0)
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The data-driven minimum-energy control problem

x(t + 1) = ? x(t) + ? u(t), x(0) = 0

xf ∈ Rn controllable in T steps from x(0) = 0

i-th control experiment

0 1 2

. . .

· · · · · ·T − 1
×
0

×

1

×

2

×

3

. . .

T

ui(T−1)...
ui(2)
ui(1)
ui(0)

xi(T )
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The data-driven minimum-energy control problem

x(t + 1) = ? x(t) + ? u(t), x(0) = 0

xf ∈ Rn controllable in T steps from x(0) = 0

i-th control experiment

0 1 2

. . .

T − 1
×
0

×

1

×

2

×

3· · · · · ·

. . .

T

ui(T−1)...
ui(2)
ui(1)
ui(0)

ui xi

xi(T )

Experimental data:
U = [u1 u2 · · · uN ]
X = [x1 x2 · · · xN ]
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The data-driven minimum-energy control problem

x(t + 1) = ? x(t) + ? u(t), x(0) = 0

xf ∈ Rn controllable in T steps from x(0) = 0

Experimental data:
U = [u1 u2 · · · uN ]
X = [x1 x2 · · · xN ]

Task: compute minimum-energy control u?(t) to reach xf in T steps from data

non-optimal

directly =
without identifying

the system!

26



Data-driven minimum-energy control inputs

1
α? = arg min

α∈RN
‖Uα‖2

s.t. xf = Xα

27
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s.t. xf = Xα

if U full row rank
u? =
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u?(T − 1)

...
u?(0)

 = Uα?

= (I − UKX (UKX )†)UX †xf

KX = basis of ker(X )

2 C ? = arg min
C∈Rn×mT

‖X − CU‖F
if U full row rank

u? = (C ?)†xf = (XU†)†xf
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Data-driven minimum-energy control inputs

1
α? = arg min

α∈RN
‖Uα‖2

s.t. xf = Xα

if U full row rank
u? =


u?(T − 1)

...
u?(0)

 = Uα?

= (I − UKX (UKX )†)UX †xf

KX = basis of ker(X )

2 C ? = arg min
C∈Rn×mT

‖X − CU‖F
if U full row rank

u? = (C ?)†xf = (XU†)†xf

N = mT linearly independent experiments suffice to reconstruct u?

27



Approximate data-driven minimum-energy control inputs

3 M? = arg min
M∈RmT×n

‖MX − U‖F û = Mxf = UX †xf
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Approximate data-driven minimum-energy control inputs

3 M? = arg min
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‖MX − U‖F û = Mxf = UX †xf

û sub-optimal solution (û 6= u?)
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Approximate data-driven minimum-energy control inputs

3 M? = arg min
M∈RmT×n

‖MX − U‖F û = Mxf = UX †xf

û sub-optimal solution (û 6= u?), however...

Theorem: If U has i.i.d. entries with zero-mean and finite variance, then as the
number of data grows (N →∞)

û a.s.−−−−−→ u?.

28



A numerical example

A = adjacency matrix of
Erdös-Rényi graph pedge = 0.1

n = 50 nodes, T = 10,
m = 7 (rand. chosen) control nodes

Uij i.i.d. r.v.’s, E[Uij ] = 0, xf rand. chosen
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Erdös-Rényi graph pedge = 0.1

n = 50 nodes, T = 10,
m = 7 (rand. chosen) control nodes

Uij i.i.d. r.v.’s, E[Uij ] = 0, xf rand. chosen
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1 50 100 150 200
100

104

108

N (data size)

‖û
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A numerical example

Gramian-based 1 2 3

data-driven

(average over 500 random realization)

A = adjacency matrix of
Erdös-Rényi graph pedge = ln n

n + 0.05

T = 2n, N = mT + 20 data samples
m = 7 (rand. chosen) control nodes

Uij i.i.d. r.v.’s, E[Uij ] = 0, xf rand. chosen
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On some relevant extensions

• Data-driven formulas of minimum-energy controls can be established for data
comprising experiments of different time lengths and/or initial conditions

• If data is corrupted by i.i.d. noise with known second-order statistics, asymptoti-
cally correct data-driven expressions of optimal control inputs can be derived

• The data-driven framework can be extended to control an output y(t) 6= x(t)
and to other cost functions depending on the input/state/output
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A non-linear application
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Roadmap

Network controllability:
◦ the structural approach
◦ the “practical” approach

Non-normal dynamics
and network structure

Data-driven control of networks

Conclusions & open challenges



Key takeaways

• Structural controllability ignores the role of edge weights and does not capture
the “physical” degree of controllability of a network.

• In practice, to evaluate the controllability of a network, one should look at the
energy required to control it (and so at the controllability Gramian).

• When using a limited number of control nodes, normal networks are difficult to
control. By contrast, there are non-normal networks that are easy to control.

• When controlling a network, exact knowledge of network structure is not always
necessary. One can design controls directly from experimental data.
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Some interesting open problems

◦ “Interesting” classes of easy-to-control networks?
(Relation to solution of Lyapunov equations, spectrum of Cauchy-like matrices,...)

◦ Control energy bounds for continuous-time networks?
(In continuous-time, control energy always grows, at least linearly, with n !)

◦ Finite sample performance of noisy data-driven controls?
(Tools from non-asymptotic random matrix theory?)

◦ Data-driven control of non-linear networks?
(Map data to higher-dimensional, linear space? Koopman operator framework?)
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Thank you !
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