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It’s a dynamical, networked, and complex world !
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x(t) = neural activity x(t) = power consumption x(t) = individual opinions

1. dynamical processes: x(t) = f(x(t)) or x(t + 1) = f(x(t))
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It’s a dynamical, networked, and complex world !

cognition, seizures desync, blackouts consensus, polarizations

x(t) = neural activity x(t) = power consumption x(t) = individual opinions

1. dynamical processes: x(t) = f(x(t)) or x(t + 1) = f(x(t))
2. many “simple” units interconnected through a network: G = (V, )

3. emergence of complex collective phenomena/behaviors
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It’s a dynamical, networked, and complex world !

cognition, seizures desync, blackouts consensus, polarizations
sensory areas generators influencers
x(t) = neural activity x(t) = power consumption x(t) = individual opinions

dynamical processes: x(t) = f(x(t)) or x(t + 1) = f(x(t))
many “simple” units interconnected through a network: G = (V, €)
emergence of complex collective phenomena/behaviors

presence of nodes with control authority



It’s a dynamical, networked, and complex world !

cognition, seizures desync, blackouts consensus, polarizations
sensory areas generators influencers
x(t) = neural activity x(t) = power consumption x(t) = individual opinions

Analyze, predict, and control dynamics over large-scale networks




Disclaimer

dynamics = linear dynamics

x(t) = Ax(t) + Bu(t) x(t +1) = Ax(t) + Bu(t)

x(0)=x €R", AecR™" BeR™"
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o the structural approach
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Network controllability: setting
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dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]




Network controllability: setting

X1
xi(t) X; = target state

A— network (l

~ matrix
%o

dynamical system with state x(t)

+ control u(t) controllability =
Ju(t), T: x(0) = xo, x(T) = xr, Vx0, X¢

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]




Network controllability: setting

X1
X¢ = target state

3 Y
A— network

~ matrix
%o

dynamical system with state x(t)

+ control u(t) controllability =
Ju(t), T: x(0) = xo, x(T) = xr, Vx0, X¢
x(t+ 1) = Ax(t) + Bu(t) iff
rank [B. AB --- A" !B|=n

C

B (typically) selects a subset of V]
[ ( yP! y) . Kalman rank condition (1963)




Network controllability: the structural approach

G= (V7 8)
u(t) 5 xi(t) structural controllability =
L’\ (l 3 weights such that network is controllable
__ network
A= matrix ﬂ

% controllability for almost all choices of weights!

dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]
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Network controllability: the structural approach

G=W,¢)
u(t) '7‘ xi(t)

3 Y
network

matrix
O‘_\\—»o

dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

structural controllability =
3 weights such that network is controllable

!

controllability for almost all choices of weights!

v captures the role of network topology

v~ can be checked via graphical conditions

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-19, No. 3, yuxe 1974 201

Structural Controllability

CHING-TAI LIN, MENBER, 1BEE




Structural network controllability: some relevant questions (w/ answers)

e How does the network structure affect structural controllability? [Liu et al., 2011]
> dense, homogeneous networks are “easier” to control (require fewer inputs)

> choice of hubs as control nodes is not “optimal”

e What is the minimum set of control nodes that guarantees controllability?
> polynomial time algorithms [Pequito et al., 2016]

(“standard” controllability: NP-hard problem [Olshevsky, 2014] !)



...however edge weights do matter !

controllable networks might be uncontrollable in practice !!



Network controllability: the “practical” approach

G=MWV¢)
u(t) 5 xi(t)
stable (l
A= network
matrix
%

dynamical system with state x(t)
+ control u(t)

x(t+ 1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

Xz*X:s

[How much energy is needed?]

11



Network controllability: the “practical” approach

g= (V78)
u(t) '7‘ xi(t)
stable (l
A= network
matrix
%

dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

T-steps controllability Gramian:

T-1
Wr =Y ABB'(A)*
k=0
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Network controllability: the “practical” approach

G= (V78)
u(t) 5 xi(t)
stable (l
A= network
matrix
%

dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

T-steps controllability Gramian:
T-1
Wr =Y ABB'(A)*
k=0

Minimum-energy control sequence:

U*(t) _ BT(AT)Tftflw;le
t=0,1,...,T—1
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Network controllability: the “practical” approach

G= (Va 8)
u(t) 5 xi(t)
stable CZ
A= network
matrix
%

dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

T-steps controllability Gramian:
T-1
Wr =Y ABBT(A")*
k=0

Minimum-energy control sequence:
U*(t) _ BT(AT)Tftflw;le
t=0,1,...,T -1

energy needed to reach x; in T steps:

T-1
> e (@) = x Wrtxe
t=0

12



Network controllability: the “practical” approach

G=W,¢)
u(t) H‘ xi(t)

stable Ll\ CZ

A= network
%

matrix
dynamical system with state x(t)
+ control u(t)

x(t+1) = Ax(t) + Bu(t)

[B (typically) selects a subset of V]

energy needed to reach x; in T steps:

Z lu* (07 = x" Wrx

scalar metrics:

A (W7) = worst-case control energy

mm(

tr(W; ) = average control energy

1/det(W7) = "volumetric” control energy



Network controllability: the “practical” approach

Gg=(,¢)

o0 xi(t) energy needed to reach x in T steps:

tabl CZ
A= nsét?/vo(rek Z [l u*(t) ||2 = Xf WT Xf

matrix %

dynamical system with state x(t)
+ control u(t)

scalar metrics:

[)\mm(WT) = worst-case control energyJ

x(t+1) = Ax(t) + Bu(t)

Amin(Wr) Ll == control energy 171
A

[B (typically) selects a subset of V] min(W7) 11 = control energy ||

13



Difficult-to-control networks
[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

Theorem: Let A be diagonalizable with eigenvector matrix V/, and (Schur) stable.

Then, for all T € Nyg:

Amin(W7T) < min {H V||2||V—1”2p(A)2(£—1) 4M(A)2(ﬁ—1)}

1= p(A? " 1 (A

where p(A) = /\ma(;(‘))\ (spec. radius) and p(A) = ||m”ax1 IxT Ax| (num. radius).
€o Xl||l=

14



Difficult-to-control networks
[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

Theorem: Let A be diagonalizable with eigenvector matrix V/, and (Schur) stable.
Then, for all T € Nyg:

_ AL 4, AR(E-D)
Amm(wr)Smm{||vu2||v—1u2p( ) A

1-p(A)? 71— p(A)?

where p(A) = )\ma(f‘))\ (spec. radius) and p(A) = ||mHax1 Ix" Ax| (num. radius).
€o Xl||l=

If Ais stable, normal, and m is fixed and independent of n:

AminOWVT) < K", with 0 < K < 1

[control energy grows exponentially fast with n !!]

14



Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

AminOWT) > L, L >0, for all n 7?7

N.B. Such networks must satisfy ||V||||V~Y|| > 1 and/or u(A) > 1

—> strong non-normality !

15



Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

AminOWT) > L, L >0, for all n 7?7

N.B. Such networks must satisfy ||V||||V~Y|| > 1 and/or u(A) > 1

—> strong non-normality !

Short answer: Yes

but a characterization of these networks is still largely an open problem !

15



An easy-to-control network
[Pasqualetti and Zampieri, 2015]

0 0]
a b 0
c
a b
c aj

16



An easy-to-control network
[Pasqualetti and Zampieri, 2015]

b
Theorem: A Toeplitz line network is easy to control if one of the following holds:

Oﬂ%zﬁland1<(b—c)2(1_a_2)

a(bre) 4bc
oS- >land1<c+b-a

16



Loosely speaking...

Wr 11 <= W5' || <= control energy ||

17



Loosely speaking...

Wr 11 <= W5' || <= control energy ||

/ .) A normal = Wy “small”
N — difficult to control
o/

A non-normal = Wr (potentially) “large”

VA
w —> (potentially) easy to control

17



Roadmap

Network controllability:
o the structural approach
o the “practical” approach
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Non-normal dynamics
and network structure




normal matrices
AAT = ATA

Matrix non-normality

A E RDXI‘I

non-normal matrices
AAT £ ATA

19



Matrix non-normality

A E RDXI‘I
normal matrices non-normal matrices
AAT = ATA AAT £ ATA

symmetric, skew-symmetric,

. ...all the rest!
orthogonal, circulant...

19



Matrix non-normality

A c RM=n

normal matrices non-normal matrices
AAT = ATA AAT £ ATA

(for A diagonalizable)
A = UDU, A = V7DV,
U unitary, D diagonal V' not unitary, D diagonal

19



Matrix non-normality

A E RDXI‘I
normal matrices non-normal matrices
AAT = ATA AAT £ ATA
fully described by spectrum described by e-pseudospectrum
(= perturbed spectrum)
o(A) ={ A}, o.(A)={ e o(A+E),

EcCr |E|| <e}
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Matrix non-normality

A e R™"
normal matrices non-normal matrices
AAT = ATA AAT £ ATA
fully described by spectrum described by e-pseudospectrum
(= perturbed spectrum)
o(A) ={ A}, o.(A)={ e o(A+E),
EecC™ | E| <e}
small perturbations of the entries small perturbations of the entries
I \
small perturbations of the spectrum (possibly) large perturbations of the spectrum

19



Im A

Matrix non-normality

normal matrices

AAT = ATA
-1 0
o:(A)
0.5 €
1071
0 * . 10;2
10_4

—-0.5
—2.5 -2 —1.5 -1 —0.5
Re A

A E RDXI‘I

Im A\

-0.5

non-normal matrices

AAT £ ATA
-1 0
o-(A)
106—1
® o
1073

—25 -2 —1.5 -1 —-0.5
Re A

19



Matrix non-normality

A E RDXI‘I

normal matrices non-normal matrices
AAT = ATA AAT £ ATA

x(t) = Ax(t), x(0) = xo

19



Matrix non-normality

A G Rnxn

normal matrices
AAT = ATA

o |
[y
\
MO
I
o P N W

non-normal matrices
AAT #* ATA

19



Matrix non-normality

A G Rnxn

normal matrices non-normal matrices
AAT = ATA AAT £ ATA

x(t) = Ax(t), x(0) = xo

[Ix (&)l

o = N W b
>
|
| —— |
=
O =
=
N
| I

19



Im A

Matrix non-normality

A E RHXI‘I
normal matrices non-normal matrices
AAT = ATA AAT £ ATA

o(A)

10 T
Lo

“
o.. o. b

QR
0

AR
-10 AN
—20 —-10 0
Re A

a(A) := max Re\ — asymptotic behavior
A€o (A)

“non-normality” of A — transient behavior

19



Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks

20



Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks

SCIENCE ADVANCES | RESEARCH ARTICLE

NETWORK SCIENCE
Structure and dynamical behavior
of non-normal networks

Malbor Asllani'?, Renaud Lambiotte’, Timoteo Carletti®*
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Reactivity and stability of large ecosystems

Si Tang' and Stefano Allesina’**
Department of Ecology and Evoluion, University of Chicago, Chicago, L, USA

PHYSICAL REVIEW RESEARCH 2, 023333 (2020)

Jormutanon s, Unersity of Chicg g USA

Universal transient behavior in large dynamical systems on networks

Wojciech Tarnowski ,' Izaak Neri®,” and Pierpaolo Vivo®?
\Institute of Theoretical Physics, Jagiellonian University, S. Lojasiewicza 11, PL 30-348 Krakéw, Poland
2Department of Mathematics, King's College London, Strand, London, WC2R 2LS, United Kingdom
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published 12 June 2020)

SCIENCE ADVANCES | RESEARCH ARTICLE

NETWORK SCIENCE
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PHYSICAL REVIEW E 86, 011909 (2012)

Non-normal amplification in random balanced neuronal networks
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Non-normality and in
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*Department of Physics, University of Boston, Boston, 02125, USA
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How to measure non-normality?

N = set of normal matrices

i 14 = N /OO||eAf|| dt
|AAT — ATA]| 0 F

sup || ™|
VIV t20

V = eigenvector matrix of A

21



|AAT — AT A

“static”

How to measure non-normality?

[e.9]
| e ede
0

“dynamic”

21



How to measure non-normality?

“static”

[e.9]
| e ede
0

|AAT — AT A

“dynamic”

...and many more
[Trefethen and Embree, Princeton (2005)]

21



A link to network structure for positive networks
[Baggio and Zampieri, 2018]

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

A stable and Metzler
(Re[o(A)] < 0 and A;j > 0, i # )

d(K, T) = relative diameter g=(V¢)

shortest path length between
two most distant nodes
vi € Kandv; € T

N =
Il

o~

—

S~

22



A link to network structure for positive networks
[Baggio and Zampieri, 2018]

x(t) = Ax(t) + Bu(t)
B non-normality ™ <— d(K,7) 11
y(t) = Cx(t) (supeso || CeAB) + directionality

A stable and Metzler

(Re[o(A)] < 0 and A; >0, i # )

d(K, T) = relative diameter g=(V¢)

shortest path length between
two most distant nodes
vi € Kandv; € T

S~

N =
Il Il
o~
—



Roadmap

Network controllability:
o the structural approach
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Controlling networks from data

Network structure may be uncertain and/or changing over time !

x(t) = neural activity

x(t) = power consumption

o
o--0
& -——__ R
=Tl N
&’{:i{ VS N
- e - ]
\\()// \\.

x(t) = individual opinions

24



Controlling networks from data

Network structure may be uncertain and/or changing over time !

‘0.9 . 2
d’f"' o or’.\,‘ \\-‘
¥ e B & i ke
¢ o) S -0 *\ o P SN SRS
e N ’ - " -~
‘:___-i-..“ \.\\ 1 P e
“ \\\\5 -4 2
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x(t) = neural activity

P P
SO0
60

However, there's plenty of data out there...

power

- AVAN

time of day

24



Can we control a network directly from data?



The data-driven minimum-energy control problem

x(t+1) =[2]x(t) +[?]u(t) )=0

x¢ € R" controllable in T steps from x(0) =0

26
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i-th control experiment
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The data-driven minimum-energy control problem

x(t+1) =[2]x(t) +[?]u(t) )=0

x¢ € R" controllable in T steps from x(0) =0

i-th control experiment
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The data-driven minimum-energy control problem

x(t+1) =[2]x(t) +[?]u(t) )=0

x¢ € R" controllable in T steps from x(0) =0

i-th control experiment

Y

26



The data-driven minimum-energy control problem

x(t+1) = x(t) +u(t), x(0) =0 Experimental data:

U=l uy - up]
x¢ € R" controllable in T steps from x(0) =0 X=[xxx - xu

i-th control experiment

Y

26



The data-driven minimum-energy control problem

x(t+1) ) +[7]u —0 Experimental data:

U=1[u up - up]

x¢ € R" controllable in T steps from x(0) =0 X=1[xx - xu

[Task: compute minimum-energy control u*(t) to reach x¢ in T steps from data]

26



The data-driven minimum-energy control problem

x(t+1) ) +[7]u —0 Experimental data:

U=1[u up - up]

x¢ € R" controllable in T steps from x(0) =0 X=1[xx - xu

non-optimal

[Task: compute minimum-energy control u*(t) to reach x¢ in T steps fromYdata]

26



The data-driven minimum-energy control problem

x(t+1) ) +[7]u —0 Experimental data:

U=1[u up - up]

x¢ € R" controllable in T steps from x(0) =0 X=1[xx - xu

non-optimal

[Task: compute minimum-energy control u*(t) to reach x¢in T stepsAfromYdata]

I
directly =
without identifying
the system!

26
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Data-driven minimum-energy control inputs

* . U 2
o = arg min [|Ua|

s.t. x = X

27



@

Data-driven minimum-energy control inputs

a* = arg min HUOzH2 if U full row rank u*(T — 1)
a€RN *

- U= : = Ua*
u*(0)
= (/ - UKx(UKx)T)UXTXf

Kx = basis of ker(X)

s.t. x = X

27



Data-driven minimum-energy control inputs

a* = arg min HUOzH2 if U full row rank u*(T — 1)
a€RN

@ - U= : = Ua*

s.t. xf = Xav 4 (0)

= (/ - UKX(UKX)T)UXTX]C
Kx = basis of ker(X)

. _ if U full row rank
@ C*=arg min || X — CU| g - u* = (C)x = (XUT)Tx

CeRnX mT




Data-driven minimum-energy control inputs

a* = arg min HUOzH2 if U full row rank u*(T — 1)
a€RN

@ - U= : = Ua*

s.t. x = X 4 (0)

= (/ - UKX(UKX)T)UXTX]C
Kx = basis of ker(X)

. _ if U full row rank
@ C*=arg min || X — CU| g - u* = (C)x = (XUT)Tx

CeRnX mT

[N = mT linearly independent experiments suffice to reconstruct u*)

27



®

Approximate data-driven minimum-energy control inputs

M* = arg min U= Mx = UXTx

MGRmen

MX — U7

28



®

Approximate data-driven minimum-energy control inputs

M* = arg min U= Mx = UXTx

MGRmen

IMX — U

U sub-optimal solution (U # u*)

28



Approximate data-driven minimum-energy control inputs

@M*:arg min ||MX — U||r U= Mx = UX"x
MeRmT Xn

U sub-optimal solution (u # u*), however...

Theorem: If U has i.i.d. entries with zero-mean and finite variance, then as the
number of data grows (N — c0)

28



A numerical example

A = adjacency matrix of
Erdés-Rényi graph pedge = 0.1

n =50 nodes, T =10,
m =7 (rand. chosen) control nodes

Uy i.id. r.v!s, E[Uj] = 0, x rand. chosen

29



A numerical example

data-driven

~ - ~
------ Gramian-based — @ — @ — @

(average over 500 random realization)

Y 108

A
[[all
-
(=]
3
;
:

[ — x|l

A = adjacency matrix of
Erdés-Rényi graph pedge = 0.1

—

n =50 nodes, T = 10,

10° :

m = 7 (rand. chosen) control nodes 1 50 100 150 200 L 50 100 150 200
N (data size) N (data size)

Uy i.id. r.v!s, E[Uj] = 0, x rand. chosen

29



A numerical example

data-driven

~ N ~
------ Gramian-based — @ — @ — @

(average over 500 random realization)

A = adjacency matrix of

[I%F — x|

Erdés-Rényi graph pedge = Inn 4 0.05

" n

T =2n, N = mT + 20 data samples 10 50 100
m =7 (rand. chosen) control nodes n (number of nodes)

Uy i.id. r.v!s, E[Uj] = 0, x rand. chosen
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On some relevant extensions

e Data-driven formulas of minimum-energy controls can be established for data
comprising experiments of different time lengths and/or initial conditions

e If data is corrupted by i.i.d. noise with known second-order statistics, asymptoti-
cally correct data-driven expressions of optimal control inputs can be derived

e The data-driven framework can be extended to control an output y(t) # x(t)
and to other cost functions depending on the input/state/output
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A non-linear application

Wi,

10
= —D,-w,- + Pm,' — G,','EI-2 + Z E,EJ (G,J COS((S,‘ — (Sj) + B,J sin(&,- — (SJ))

j=Li

discretized model w/o control
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A non-linear application

Wi,

10
= —Djw; + Pni — G,',-EI-2 + Z E,Ej (G,J COS((;,' — 5,) + B,J sin(&,- — (SJ)) + U(t)

j=Li

discretized model w/ control
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] S ! control
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2 4 6 8 10 12 14 300 350 400 450 500
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Roadmap

Network controllability:
o the structural approach
o the “practical” approach

. mmmmmm=- ~
Smeest Non-normal dynamics
e and network structure
.I ------- -
Y

Data-driven control of networks

A4

Conclusions & open challenges




Key takeaways

Structural controllability ignores the role of edge weights and does not capture
the “physical” degree of controllability of a network.

In practice, to evaluate the controllability of a network, one should look at the
energy required to control it (and so at the controllability Gramian).

When using a limited number of control nodes, normal networks are difficult to
control. By contrast, there are non-normal networks that are easy to control.

When controlling a network, exact knowledge of network structure is not always
necessary. One can design controls directly from experimental data.
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Some interesting open problems

“Interesting” classes of easy-to-control networks?
(Relation to solution of Lyapunov equations, spectrum of Cauchy-like matrices,...)

Control energy bounds for continuous-time networks?
(In continuous-time, control energy always grows, at least linearly, with n !)

Finite sample performance of noisy data-driven controls?
(Tools from non-asymptotic random matrix theory?)

Data-driven control of non-linear networks?
(Map data to higher-dimensional, linear space? Koopman operator framework?)
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Thank you !
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