# From Model-Based to Data-Driven Control of Network Dynamics

Giacomo Baggio

Department of Information Engineering (DEI) University of Padova

October 14, 2020











biology

engineering

social science



x(t) =neural activity



x(t) = power consumption



x(t) = individual opinions

1. dynamical processes:  $\dot{x}(t) = f(x(t))$  or x(t+1) = f(x(t))



1. dynamical processes:  $\dot{x}(t) = f(x(t))$  or x(t+1) = f(x(t))

2. many "simple" units interconnected through a network:  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ 



- 1. dynamical processes:  $\dot{x}(t) = f(x(t))$  or x(t+1) = f(x(t))
- 2. many "simple" units interconnected through a network:  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- 3. emergence of complex collective phenomena/behaviors



- 1. dynamical processes:  $\dot{x}(t) = f(x(t))$  or x(t+1) = f(x(t))
- 2. many "simple" units interconnected through a network:  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- 3. emergence of complex collective phenomena/behaviors
- 4. presence of nodes with control authority



Analyze, predict, and *control* dynamics over large-scale networks

## Disclaimer

dynamics = linear dynamics

$$\dot{x}(t) = Ax(t) + Bu(t)$$
  $x(t+1) = Ax(t) + Bu(t)$ 

 $x(0) = x_0 \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{n imes n}$ ,  $B \in \mathbb{R}^{n imes m}$ 

# Roadmap



## Roadmap



12 May, 2011



# ARTICLE

doi:10.1038/nature10011

## Controllability of complex networks

Yang-Yu Liu<sup>1,2</sup>, Jean-Jacques Slotine<sup>3,4</sup> & Albert-László Barabásl<sup>1,2,5</sup>

12 May, 2011



# ARTICLE Controllability of complex networks ARTICLE Received 7 Apr 2015 | Accepted 19 Aug 2015 | Published 1 Oct 2015 DOI: 10.1038/recentrational OPEN Controllability of structural brain networks Shi Gu<sup>1,2</sup>, Fabio Pasqualett<sup>3</sup>, Matthew Cieslak<sup>4</sup>, Qawi K. Telesford<sup>2,5</sup>, Alfred B. Yu<sup>5</sup>, Ari E. Kahn<sup>2</sup>, John D. Medaglia<sup>2</sup>, Jean M. Vettel<sup>4,5</sup>, Michael B. Miller<sup>4</sup>, Scott T. Grafton<sup>4</sup> & Danielle S. Bassett<sup>2,6</sup>



| ARTICLE                                                                                                                                                                                                          | 038/nature10011     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Controllability of complex networks                                                                                                                                                                              |                     |
| ARTICLE      DOI:10.1031/resem.0415      OPEN        Received 7 Apr 2015   Accepted 19 Aug 2015   Published 1 Oct 2015      DOI:10.1031/resem.0415      OPEN        Controllability of structural brain networks |                     |
| OPEN @ ACCESS Freely available online                                                                                                                                                                            | PLos one            |
| Nodal Dynamics, Not Degree Distributions, I<br>the Structural Controllability of Complex Ne                                                                                                                      | Determine<br>tworks |

Noah J. Cowan<sup>1</sup>\*, Erick J. Chastain<sup>2</sup>, Daril A. Vilhena<sup>3</sup>, James S. Freudenberg<sup>4</sup>, Carl T. Bergstrom<sup>3,5</sup>

12 May, 2011 nature TAMING COMPLE



## Network controllability: setting



x(t+1) = Ax(t) + Bu(t)

B (typically) selects a subset of  ${\cal V}$ 

#### **Network controllability: setting**

 $x_n$ 

controllability =

 $x_0$ 



x(t+1) = Ax(t) + Bu(t)

*B* (typically) selects a subset of  $\mathcal{V}$ 

x<sub>n</sub>

#### **Network controllability: setting**





controllability = $\exists u(t), T: x(0) = x_0, x(T) = x_f, \forall x_0, x_f$ 



#### Network controllability: the structural approach



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  ${\cal V}$ 

structural controllability =  $\exists$  weights such that network is controllable

controllability for almost all choices of weights!

#### Network controllability: the structural approach



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  ${\cal V}$ 

controllability for almost all choices of weights!

captures the role of network topologycan be checked via graphical conditions

THEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-19, NO. 3, JUNE 1974

Structural Controllability

CHING-TAI LIN, MEMBER, IEEE

201

Structural network controllability: some relevant questions (w/ answers)

- How does the network structure affect structural controllability? [Liu et al., 2011]
  ▷ dense, homogeneous networks are "easier" to control (require fewer inputs)
  ▷ choice of hubs as control nodes is not "optimal"
- What is the minimum set of control nodes that guarantees controllability?
  > polynomial time algorithms [Pequito et al., 2016]

("standard" controllability: NP-hard problem [Olshevsky, 2014] !)

...however edge weights do matter !

controllable networks might be uncontrollable in practice !!





x(t+1) = Ax(t) + Bu(t)

B (typically) selects a subset of  ${\cal V}$ 

How much energy is needed?



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  ${\cal V}$ 

$$\mathcal{T} ext{-steps controllability Gramian:} \ \mathcal{W}_\mathcal{T} = \sum_{k=0}^{\mathcal{T}-1} A^k B B^ op (A^ op)^k$$



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  $\mathcal{V}$ 

$$\mathcal{T} ext{-steps controllability Gramian:} \ \mathcal{W}_\mathcal{T} = \sum_{k=0}^{\mathcal{T}-1} \mathcal{A}^k B B^ op (\mathcal{A}^ op)^k$$

Minimum-energy control sequence:  $u^{*}(t) = B^{\top}(A^{\top})^{T-t-1}W_{T}^{-1}x_{f}$  $t = 0, 1, \dots, T-1$ 



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  $\mathcal V$ 

$$\mathcal{T} ext{-steps controllability Gramian:} \ \mathcal{W}_\mathcal{T} = \sum_{k=0}^{\mathcal{T}-1} \mathcal{A}^k B B^ op (\mathcal{A}^ op)^k$$

Minimum-energy control sequence:  $u^{\star}(t) = B^{\top}(A^{\top})^{T-t-1}W_{T}^{-1}x_{f}$  $t = 0, 1, \dots, T-1$ 

energy needed to reach  $x_{\rm f}$  in T steps:  $\sum_{t=0}^{T-1} \|u^{\star}(t)\|^2 = x_{\rm f}^{\top} \mathcal{W}_T^{-1} x_{\rm f}$ 



dynamical system with state x(t)+ control u(t)

$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  $\mathcal V$ 

energy needed to reach  $x_{\rm f}$  in T steps:  $\sum_{t=0}^{T-1} \|u^{\star}(t)\|^2 = x_{\rm f}^{\top} \mathcal{W}_T^{-1} x_{\rm f}$ 

scalar metrics:

 $\lambda_{\min}^{-1}(\mathcal{W}_{\mathcal{T}}) = \text{worst-case control energy}$   $\operatorname{tr}(\mathcal{W}_{\mathcal{T}}^{-1}) = \text{average control energy}$  $1/\operatorname{det}(\mathcal{W}_{\mathcal{T}}) = \text{"volumetric" control energy}$ 



$$x(t+1) = Ax(t) + Bu(t)$$

B (typically) selects a subset of  $\mathcal{V}$ 

energy needed to reach  $x_{\rm f}$  in T steps:  $\sum_{t=0}^{T-1} \|u^{\star}(t)\|^2 = x_{\rm f}^{\top} \mathcal{W}_T^{-1} x_{\rm f}$ 

scalar metrics:

 $\lambda_{\mathsf{min}}^{-1}(\mathcal{W}_{\mathcal{T}}) =$  worst-case control energy

 $\lambda_{\min}(\mathcal{W}_{\mathcal{T}}) \downarrow \downarrow \Longrightarrow \text{ control energy } \uparrow \uparrow$  $\lambda_{\min}(\mathcal{W}_{\mathcal{T}}) \uparrow \uparrow \Longrightarrow \text{ control energy } \downarrow \downarrow$ 

#### Difficult-to-control networks

[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

**Theorem:** Let A be diagonalizable with eigenvector matrix V, and (Schur) stable. Then, for all  $T \in \mathbb{N}_{>0}$ :

$$\lambda_{\min}(\mathcal{W}_{\mathcal{T}}) \leq \min\left\{ \|V\|^2 \|V^{-1}\|^2 \frac{\rho(A)^{2(\frac{n}{m}-1)}}{1-\rho(A)^2}, \frac{4\mu(A)^{2(\frac{n}{m}-1)}}{1-\mu(A)^2} \right\}$$

where  $\rho(A) = \max_{\lambda \in \sigma(A)} \lambda$  (spec. radius) and  $\mu(A) = \max_{\|x\|=1} |x^{\top}Ax|$  (num. radius).

#### **Difficult-to-control networks**

[Pasqualetti et al., 2014], [Bof et al., 2016], [Olshevsky, 2016],...

**Theorem:** Let A be diagonalizable with eigenvector matrix V, and (Schur) stable. Then, for all  $T \in \mathbb{N}_{>0}$ :

$$\lambda_{\min}(\mathcal{W}_{\mathcal{T}}) \leq \min\left\{ \|V\|^2 \|V^{-1}\|^2 \frac{\rho(A)^{2(\frac{n}{m}-1)}}{1-\rho(A)^2}, \frac{4\mu(A)^{2(\frac{n}{m}-1)}}{1-\mu(A)^2} \right\}$$

where 
$$\rho(A) = \max_{\lambda \in \sigma(A)} \lambda$$
 (spec. radius) and  $\mu(A) = \max_{\|x\|=1} |x^{\top}Ax|$  (num. radius).

If A is stable, *normal*, and m is fixed and independent of n:

$$\lambda_{\min}(\mathcal{W}_{\mathcal{T}}) \leq K^{n}$$
, with  $0 < K < 1$ 

control energy grows exponentially fast with n !!

#### Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

 $\lambda_{\min}(\mathcal{W}_T) \geq L, L > 0$ , for all n ??

**N.B.** Such networks must satisfy  $\|V\|\|V^{-1}\| \gg 1$  and/or  $\mu(A) > 1$ 

 $\implies$  strong non-normality !

#### Easy-to-control networks?

If A is stable and m is fixed and independent of n, are there networks such that

 $\lambda_{\min}(\mathcal{W}_T) \geq L, L > 0$ , for all n ??

**N.B.** Such networks must satisfy  $||V|| ||V^{-1}|| \gg 1$  and/or  $\mu(A) > 1$  $\implies$  strong non-normality !

Short answer: Yes

but a characterization of these networks is still largely an open problem !

#### An easy-to-control network

[Pasqualetti and Zampieri, 2015]



$$A = \begin{bmatrix} a & b & 0 & \cdots & 0 \\ c & a & b & \cdots & 0 \\ 0 & c & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a & b \\ 0 & \cdots & \cdots & c & a \end{bmatrix}$$

#### An easy-to-control network

[Pasqualetti and Zampieri, 2015]



Theorem: A Toeplitz line network is easy to control if one of the following holds:

$$\circ rac{a(b+c)}{4bc} \leq 1$$
 and  $1 < (b-c)^2(1-rac{a^2}{4bc})$   
 $\circ rac{a(b+c)}{4bc} > 1$  and  $1 \leq c+b-a$ 

Loosely speaking...

$$\mathcal{W}_{\mathcal{T}} \uparrow \uparrow \iff \mathcal{W}_{\mathcal{T}}^{-1} \downarrow \downarrow \iff \text{control energy} \downarrow \downarrow$$

Loosely speaking...

$$\mathcal{W}_{\mathcal{T}} \uparrow \uparrow \iff \mathcal{W}_{\mathcal{T}}^{-1} \downarrow \downarrow \iff \text{ control energy } \downarrow \downarrow$$



 $\begin{array}{rcl} {\it A} \mbox{ normal } \implies {\it W}_{{\it T}} \mbox{ "small"} \\ \implies \mbox{ difficult to control} \end{array}$ 



$$\begin{array}{rcl} A \text{ non-normal} & \Longrightarrow & \mathcal{W}_{\mathcal{T}} \text{ (potentially) "large"} \\ & \implies \text{ (potentially) easy to control} \end{array}$$

# Roadmap






non-normal matrices  $AA^{\top} \neq A^{\top}A$ 

...all the rest!

normal matrices  $AA^{\top} = A^{\top}A$   $A = U^*DU$ , U unitary, D diagonal  $A \in \mathbb{R}^{n \times n}$ 

non-normal matrices  $AA^{\top} \neq A^{\top}A$ 

(for A diagonalizable)  $A = V^{-1}DV$ , V not unitary, D diagonal

$$A \in \mathbb{R}^{n \times n}$$

normal matrices  $AA^{\top} = A^{\top}A$ 

fully described by spectrum

$$\sigma(A) = \{\lambda_i\}_{i=1}^n$$

non-normal matrices  $AA^{\top} \neq A^{\top}A$ 

described by  $\varepsilon$ -pseudospectrum ( $\approx$  perturbed spectrum)

$$\sigma_{\varepsilon}(A) = \{ \lambda \in \sigma(A + E), \\ E \in \mathbb{C}^{n \times n}, \|E\| \le \varepsilon \}$$

$$A \in \mathbb{R}^{n \times n}$$

normal matrices  $AA^{\top} = A^{\top}A$ 

fully described by spectrum

 $\sigma(A) = \{\lambda_i\}_{i=1}^n$ 

small perturbations of the entries ↓ small perturbations of the spectrum non-normal matrices  $AA^{\top} \neq A^{\top}A$ 

described by  $\varepsilon$ -pseudospectrum ( $\approx$  perturbed spectrum)

$$\sigma_{\varepsilon}(A) = \{ \lambda \in \sigma(A + E), \\ E \in \mathbb{C}^{n \times n}, \|E\| \le \varepsilon \}$$

small perturbations of the entries  $\downarrow \downarrow$  (possibly) *large* perturbations of the spectrum



ε

 $10^{-1}$ 

10<sup>-2</sup>

10<sup>-3</sup>

$$A \in \mathbb{R}^{n \times n}$$
  
normal matrices  
$$AA^{\top} = A^{\top}A$$
$$AA^{\top} = A^{\top}A$$
$$\dot{x}(t) = Ax(t), \ x(0) = x_0$$







### Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks

#### Non-normal network dynamics

Non-normality has been shown to play a key role in many real networks



#### How to measure non-normality?

 $\mathcal{N}=$  set of normal matrices



V = eigenvector matrix of A

#### How to measure non-normality?



### How to measure non-normality?



...and many more [Trefethen and Embree, Princeton (2005)]

#### A link to network structure for positive networks

[Baggio and Zampieri, 2018]

 $\dot{x}(t) = Ax(t) + Bu(t)$  y(t) = Cx(t)A stable and Metzler  $(\text{Re}[\sigma(A)] < 0 \text{ and } A_{ii} > 0, i \neq j)$ 

 $d(\mathcal{K}, \mathcal{T}) = \text{relative diameter} \qquad \qquad \mathcal{G} = (\mathcal{V}, \mathcal{E})$ shortest path length between two most distant nodes  $v_i \in \mathcal{K} \text{ and } v_j \in \mathcal{T} \qquad \qquad \qquad \mathcal{T} = \{ \bullet \}$ 

### A link to network structure for positive networks

[Baggio and Zampieri, 2018]

 $\dot{x}(t) = Ax(t) + Bu(t)$  y(t) = Cx(t) A stable and Metzler  $(\operatorname{Re}[\sigma(A)] < 0 \text{ and } A_{ij} > 0, i \neq j)$ 

$$\begin{array}{ll} \text{non-normality} \uparrow\uparrow & \Longleftrightarrow & d(\mathcal{K},\mathcal{T})\uparrow\uparrow\\ (\sup_{t\geq 0}\|Ce^{\mathcal{A}t}B\|) & & + \text{ directionality} \end{array}$$

 $d(\mathcal{K}, \mathcal{T}) =$  relative diameter

shortest path length between two most distant nodes  $v_i \in \mathcal{K}$  and  $v_i \in \mathcal{T}$ 



# Roadmap



### Controlling networks from data

Network structure may be uncertain and/or changing over time !



x(t) = neural activity



$$x(t) =$$
 power consumption



x(t) = individual opinions

### Controlling networks from data

Network structure may be uncertain and/or changing over time !



However, there's plenty of data out there...

Can we control a network *directly from data*?

$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{f} \in \mathbb{R}^{n}$  controllable in T steps from x(0) = 0

$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{f} \in \mathbb{R}^{n}$  controllable in T steps from x(0) = 0



$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{f} \in \mathbb{R}^{n}$  controllable in T steps from x(0) = 0



$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{f} \in \mathbb{R}^{n}$  controllable in T steps from x(0) = 0



$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{f} \in \mathbb{R}^{n}$  controllable in T steps from x(0) = 0



$$x(t+1) = ?x(t) + ?u(t), x(0) = 0$$

 $x_{\mathsf{f}} \in \mathbb{R}^n$  controllable in  $\mathcal{T}$  steps from x(0) = 0



$$\begin{aligned} x(t+1) &= \underbrace{?}{x(t)} + \underbrace{?}{u(t)}, \ x(0) &= 0 \\ x_{f} &\in \mathbb{R}^{n} \text{ controllable in } T \text{ steps from } x(0) &= 0 \end{aligned} \qquad \begin{aligned} & \text{Experimental data:} \\ & U &= \begin{bmatrix} u_{1} & u_{2} & \cdots & u_{N} \end{bmatrix} \\ & X &= \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{N} \end{bmatrix} \end{aligned}$$



 $\begin{aligned} x(t+1) &= \underbrace{?}{}x(t) + \underbrace{?}{}u(t), \ x(0) &= 0 \\ x_{f} &\in \mathbb{R}^{n} \text{ controllable in } T \text{ steps from } x(0) &= 0 \end{aligned} \qquad \begin{aligned} & \text{Experimental data:} \\ & U &= \begin{bmatrix} u_{1} \ u_{2} \ \cdots \ u_{N} \end{bmatrix} \\ & X &= \begin{bmatrix} x_{1} \ x_{2} \ \cdots \ x_{N} \end{bmatrix} \end{aligned}$ 

**Task:** compute minimum-energy control  $u^{*}(t)$  to reach  $x_{f}$  in T steps from data

$$\begin{aligned} x(t+1) &= ? x(t) + ? u(t), \ x(0) &= 0 \\ x_{f} \in \mathbb{R}^{n} \text{ controllable in } T \text{ steps from } x(0) &= 0 \end{aligned} \qquad \begin{array}{l} \text{Experimental data:} \\ U &= [u_{1} \ u_{2} \ \cdots \ u_{N}] \\ X &= [x_{1} \ x_{2} \ \cdots \ x_{N}] \end{aligned}$$

**Task:** compute minimum-energy control  $u^*(t)$  to reach  $x_f$  in T steps from data

$$\begin{aligned} x(t+1) &= ? x(t) + ? u(t), \ x(0) &= 0 \\ x_{f} \in \mathbb{R}^{n} \text{ controllable in } T \text{ steps from } x(0) &= 0 \end{aligned} \qquad \begin{array}{c} \text{Experimental data:} \\ U &= [u_{1} \ u_{2} \ \cdots \ u_{N}] \\ X &= [x_{1} \ x_{2} \ \cdots \ x_{N}] \end{aligned}$$



$$(1) \quad \begin{aligned} \alpha^{\star} &= \arg\min_{\alpha \in \mathbb{R}^{N}} \|U\alpha\|^{2} \\ \text{s.t. } x_{\mathsf{f}} &= X\alpha \end{aligned}$$

$$\begin{array}{c} \begin{array}{c} & \alpha^{\star} = \arg\min_{\alpha \in \mathbb{R}^{N}} \|U\alpha\|^{2} \\ \text{ s.t. } x_{\mathrm{f}} = X\alpha \end{array} & \xrightarrow{\mathrm{if } U \mathrm{ full row rank}} & u^{\star} = \begin{bmatrix} u^{\star}(T-1) \\ \vdots \\ u^{\star}(0) \end{bmatrix} = U\alpha^{\star} \\ & = (I - UK_{X}(UK_{X})^{\dagger})UX^{\dagger}x_{\mathrm{f}} \\ & K_{X} = \mathrm{basis of } \mathrm{ker}(X) \end{array}$$

$$\begin{array}{c} \begin{array}{c} & \alpha^{\star} = \arg\min_{\alpha \in \mathbb{R}^{N}} \|U\alpha\|^{2} \\ \text{ s.t. } x_{\mathrm{f}} = X\alpha \end{array} & \xrightarrow{\mathrm{if } U \mathrm{ full row rank}} & u^{\star} = \begin{bmatrix} u^{\star}(T-1) \\ \vdots \\ u^{\star}(0) \end{bmatrix} = U\alpha^{\star} \\ & = (I - UK_{X}(UK_{X})^{\dagger})UX^{\dagger}x_{\mathrm{f}} \\ & K_{X} = \mathrm{basis of } \mathrm{ker}(X) \end{array}$$

$$(2) C^{\star} = \arg \min_{C \in \mathbb{R}^{n \times mT}} \|X - CU\|_{F} \xrightarrow{\text{if } U \text{ full row rank}} u^{\star} = (C^{\star})^{\dagger} x_{f} = (XU^{\dagger})^{\dagger} x_{f}$$

$$\begin{array}{c} \begin{array}{c} & \alpha^{\star} = \arg\min_{\alpha \in \mathbb{R}^{N}} \|U\alpha\|^{2} \\ \text{ s.t. } x_{\mathrm{f}} = X\alpha \end{array} & \xrightarrow{\mathrm{if } U \mathrm{ full row rank}} & u^{\star} = \begin{bmatrix} u^{\star}(T-1) \\ \vdots \\ u^{\star}(0) \end{bmatrix} = U\alpha^{\star} \\ & = (I - UK_{X}(UK_{X})^{\dagger})UX^{\dagger}x_{\mathrm{f}} \\ K_{X} = \mathrm{basis of } \mathrm{ker}(X) \end{array}$$

$$(2) C^{\star} = \arg \min_{C \in \mathbb{R}^{n \times mT}} \|X - CU\|_{F} \xrightarrow{\text{if } U \text{ full row rank}} u^{\star} = (C^{\star})^{\dagger} x_{f} = (XU^{\dagger})^{\dagger} x_{f}$$

N = mT linearly independent experiments suffice to reconstruct  $u^{\star}$ 

### Approximate data-driven minimum-energy control inputs

$$(3) M^{\star} = \arg \min_{M \in \mathbb{R}^{mT \times n}} \|MX - U\|_{F} \longrightarrow \widehat{u} = Mx_{f} = \frac{UX^{\dagger}x_{f}}{V}$$

\_
## Approximate data-driven minimum-energy control inputs

$$(3) M^* = \arg \min_{M \in \mathbb{R}^{mT \times n}} \|MX - U\|_F \longrightarrow \widehat{u} = Mx_f = UX^{\dagger}x_f$$

\_

 $\hat{u}$  sub-optimal solution ( $\hat{u} \neq u^*$ )

#### Approximate data-driven minimum-energy control inputs

$$\hat{u}$$
 sub-optimal solution ( $\hat{u} \neq u^*$ ), however...

**Theorem:** If U has i.i.d. entries with zero-mean and finite variance, then as the number of data grows  $(N \rightarrow \infty)$ 

$$\widehat{u} \xrightarrow{\mathsf{a.s.}} u^{\star}.$$

#### A numerical example



 $A={
m adjacency\ matrix\ of}$ Erdös-Rényi graph  $p_{
m edge}=0.1$ 

n = 50 nodes, T = 10, m = 7 (rand. chosen) control nodes

 $U_{ij}$  i.i.d. r.v.'s,  $\mathbb{E}[U_{ij}] = 0$ ,  $x_{f}$  rand. chosen

### A numerical example



 $U_{ij}$  i.i.d. r.v.'s,  $\mathbb{E}[U_{ij}] = 0$ ,  $x_f$  rand. chosen

#### A numerical example



A= adjacency matrix of Erdös-Rényi graph  $p_{
m edge}=rac{\ln n}{n}+0.05$ 

T = 2n, N = mT + 20 data samples m = 7 (rand. chosen) control nodes

 $U_{ij}$  i.i.d. r.v.'s,  $\mathbb{E}[U_{ij}] = 0$ ,  $x_f$  rand. chosen



#### On some relevant extensions

• Data-driven formulas of minimum-energy controls can be established for data comprising experiments of different time lengths and/or initial conditions

• If data is corrupted by i.i.d. noise with known second-order statistics, asymptotically correct data-driven expressions of optimal control inputs can be derived

• The data-driven framework can be extended to control an output  $y(t) \neq x(t)$ and to other cost functions depending on the input/state/output

### A non-linear application



$$\begin{split} \dot{\delta}_i &= \omega_i, \\ \frac{H_i}{\pi f_b} \dot{\omega}_i &= -D_i \omega_i + P_{\mathsf{m}i} - G_{ii} E_i^2 + \sum_{j=1, j \neq i}^{10} E_i E_j \left( G_{ij} \cos(\delta_i - \delta_j) + B_{ij} \sin(\delta_i - \delta_j) \right) \end{split}$$

discretized model w/o control



#### A non-linear application



# Roadmap



## Key takeaways

- Structural controllability ignores the role of edge weights and does not capture the "physical" degree of controllability of a network.
- In practice, to evaluate the controllability of a network, one should look at the energy required to control it (and so at the controllability Gramian).
- When using a limited number of control nodes, normal networks are difficult to control. By contrast, there are non-normal networks that are easy to control.
- When controlling a network, exact knowledge of network structure is not always necessary. One can design controls directly from experimental data.

## Some interesting open problems

- "Interesting" classes of easy-to-control networks? (Relation to solution of Lyapunov equations, spectrum of Cauchy-like matrices,...)
- Control energy bounds for continuous-time networks? (In continuous-time, control energy always grows, at least linearly, with *n* !)
- Finite sample performance of noisy data-driven controls? (Tools from non-asymptotic random matrix theory?)
- Data-driven control of non-linear networks? (Map data to higher-dimensional, linear space? Koopman operator framework?)

# Thank you !

## Joint work with: S. Zampieri (UniPD), F. Pasqualetti (UCR), D. Bassett (UPenn)

Pasqualetti, Zampieri, Bullo, "Controllability metrics, limitations and algorithms for complex networks", IEEE TCNS, 2014 Baggio, Zampieri, "On the relation between non-normality and diameter in linear dynamical networks", ECC, 2018 Baggio, Bassett, Pasqualetti, "Data-driven control of complex networks", arXiv, 2020